

DOSSIER PROJET

FERGUENIS Bérenger

Développeur Web et Web mobile

Studi

Projet restaurant

Quai Antique

 1

SOMMAIRE

Le projet restaurant ………………………………………………………………………………………………… p 5

Résumé du projet restaurant …………………………………………………………………………………… p 6

Environnement humain du projet restaurant ………………………………………………………….. p 6

Environnement technique du projet restaurant ………………………………………………………. p 6

Conception du projet restaurant ……………………………………………………………………………… p 7

1. Mise en place avant l’initialisation du projet
a) Création d’un Google Dive
b) Création d’un Trello
c) Méthode MoSCOW

2. Les diagrammes UML

a) Diagramme de cas d’utilisation
b) Diagramme de séquence
c) Diagramme de classe

3. Charte graphique
4. Références et inspirations
5. Wireframes

Initialisation du projet restaurant ………………………………………………………………........... p 16

1. Les prérequis
2. Création du nouveau projet Symfony
3. L’environnement de développement et les extensions
4. Création du fichier readme.md

Organisation par branche avec Git …………………………………………………………………….… p 18

Mise en place d’autres outils ………………………………………………………………………………. p 18

1. Webpack Encore
2. Préprocesseur SASS, SCSS
3. Postprocesseur PostCSS et autoprefixer
4. Référencer des images
5. Bootstrap 5

Création du premier Controller ……………………………………………………………….............. p 21

1. Première route pour la page d’accueil
2. Méthode render

Mise en place de la base de données ……………………………………………………………….... p 22

 2

1. Création du compte alwaysdata
2. Création de la base de données
3. Changer les variables d’environnement

Création des entités ………………………………………………………………................................ p 23

1. Création de l’entité Users
2. Créations des autres entités
3. Les migrations
4. Appliquer les migrations

Réalisation des tests unitaires …………………………………………………………………..………... p 26

PARTIE FRONT - La page d’accueil ……………………………………………………………………….. p 28

1. Les Pages HTML
2. Les fichiers SASS (SCSS)

a) L’ architecture SASS
b) Mise en œuvre fidèle de la maquette
c) Compilation des fichiers CSS

PARTIE FRONT - Les autres pages ………………………………………………………………………. p 30
1. Création d’autres Controllers
2. Utilisation des variables Twig
3. La police d’écriture
4. Intégration d’images SVG

a) Les symboles
b) Les icônes

5. Les chemins d’accès

Gestion de l’authentification et autorisation ……………………………………………………. p 33

L’API ‘IntersectionObserver’ ……………………………………………………………………………… p 34

Création du formulaire d’inscription ………………………………………………………………….. p 34

L’ utilisateur connecté ………………………………………………………………………………………. p 37

1. le rôle
2. la condition

Formulaire de réservation ……………………………………………………………………………….. p 38

1. Les contraintes du Chef
2. Le Controller de réservation
3. Le FormType pour la réservation
4. Le fichier Service
5. Les conditions, fonctions et contraintes

a) Vérification du formulaire soumis
b) La date, l’heure et le seuil
c) Garantir que chaque réservation est unique

 3

d) Comparaison des heures par rapport à la base de données
e) La méthode persist() et flush()

Fixtures et utilisation de FakerPHP …………………………………………………………………. p 45

1. Installation des fixtures
2. Création de faux utilisateurs et de l’admin
3. fonctionnalité de Bundle getReference() et addReference()
4. Charger les fixtures dans la base de données

La bibliothèque VichUploader ……………………………………………………………………….. p 48

1. Installation de VichUploader
2. Configuration de VichUploader
3. Modification des chemins pour les images
4. Compression des images

L’interface utilisateur avec une solution de gestion de contenu - EasyAdmin4 … p 49

1. Installation de Easy Admin 4
2. Création du tableau de bord
3. Sécuriser le backoffice par une connexion
4. Création des CRUDController avec Easy Admin 4

Mise en œuvre des composants de l’application de gestion de contenu ……… p 52

1. Accès au tableau de bord
2. Application du CRUD depuis le tableau de bord

L'optimisation du référencement avec le fichier sitemap.xml ……………………... p 54
1. Protocole respecté
2. Controller sitemap.xml
3. Boucle dans le fichier Twig

Déploiement du site sur Heroku ………………………………………………………………….. p 56

1. les prérequis
2. Création de l’application Heroku
3. Création du fichier procfile
4. Configuration de l’environnement dev/prod

a)Définir la variable d’environnement
b)Définir la DATABASE URL
c)Définir ses propres variables d’environnement

5. Exécuter les migrations
6. Rajouter le buildPack pour nodeJS
7. Configuration du server web avec Symfony - Apache : (.htaccess)
8. Déploiement sur Heroku

Attribution du rôle admin ………………………………………………………………………….. p 62

Vérification du bon fonctionnement de l'application ………………………………… p 63

 4

Difficultés rencontrées lors du développement du projet ……………………… p 64

Fonctionnalité la plus représentative : L’authentification ……….……………… p 65

1. Jeu d’essai
2. Veille effectuée sur les vulnérabilités de sécurité
3. Recherche à partir de site anglophone,

extrait du site anglophone et sa traduction

Annexes …………………………………………………………………………………………………. p 71

Remerciements ……………………………………………………………………………………… p 72

 5

Le projet restaurant

Afin de valider l’acquisition des compétences requises pour chacune des Activités Types du
Titre Professionnel de Développeur Web et Web Mobile. L’école du groupe STUDI réalise une
Évaluation passée en Cours de Formation(Livret ECF).
Pour cet ECF le sujet était de créer une application pour un projet de restaurant en
respectant les 8 compétences du titre professionnel.

Pour la partie front-end il y a 4 compétences à développer en intégrant les recommandations
de sécurité à savoir le maquettage, l’interface utilisateur web statique et dynamique
adaptable ainsi qu’une interface avec une solution de gestion de contenu.

Pour la partie back-end il y a également 4 autres compétences à développer en intégrant les
recommandations de sécurité comme créer une base de données, développer les
composants aux données, développer la partie back-end d’une application web et web
mobile puis élaborer et mettre en œuvre des composants dans une application de gestion de
contenu.

Le projet restaurant est une application web vitrine pour le Quai Antique situé à Chambery.
Le Chef Arnaud Michant est un passionné des produits et producteurs de la Savoie. Le Quai
Antique proposera au déjeuner comme au diner une expérience gastronomique, à travers
une cuisine sans artifice. Lors de l’inauguration de son deuxième établissement, le Chef
Michant a pu constater l’impact positif que pouvait avoir un bon site web sur son chiffre
d’affaires.

J’ai donc pour mission d’honorer les envies et contraintes que me propose ce projet.
Le sujet comprend des User Stories qui doivent être respectées, tout en servant de guide
pour structurer efficacement le projet et ses différentes étapes jusqu'à son déploiement.

 6

Résumé du projet restaurant

Le projet restaurant, Quai Antique, est une application web vitrine. L’utilisateur peut
consulter les différents plats, menus, photos et faire une réservation. L’utilisateur peut créer
un compte afin de gagner du temps lors de ses prochaines réservations avec un système de
pré-remplissage lors de la création du compte pour le nombre de convives et les allergies
mentionnées. C’est une particularité du site car cela permettra aux utilisateurs réguliers du
restaurant de gagner du temps lors de la complétion du formulaire de réservation.

Environnement humain du projet restaurant

C’est un projet que j’ai réalisé seul pour une durée approximative de 2 mois d’une moyenne
de deux à quatre heures par jour.
Lors des blocages ou incompréhensions techniques pendant la durée de ce projet, j’ai pu
obtenir de l’aide auprès des différents formateurs au sein de l’école STUDI, tel que les cours,
le forum sur la plateforme ou bien même lors de live qu’organisaient certains formateurs. J’ai
également pu me renseigner auprès des différentes solutions que propose la documentation
de l’environnement que j’ai choisis à savoir le framework Symfony. Le site Stackoverflow m’a
été d’une grande aide également ainsi que des salons Discord qu’ont organisé certains
camarades de ma promotion pour l’entraide de l’Évaluation en Cours de Formation (ECF).

Environnement technique du projet restaurant

J'ai utilisé le framework Symfony pour démarrer mon projet car il offre une solution
sécurisée, rapide et moins fastidieuse que le PHP pur. J'ai créé l'application sur la version
Symfony 5.4 LTS (Long-term support), qui offre une documentation précise, une bibliothèque
de gestion de bases de données Doctrine et un système en ligne de commande pour générer
des entités, des contrôleurs et des formulaires.

Symfony propose également une partie Front via son moteur de template Twig et ainsi
réduire les risques d’injections de code malveillant avec son système d’échappement
automatique des variables. J'ai aussi choisi d'utiliser Twig pour sa facilité d'utilisation, sa
flexibilité et son intégration facile avec les autres fonctionnalités Symfony.

Pour le Front-end, j'ai utilisé HTML5 et CSS3, ainsi que Bootstrap v5.3.0 pour sa responsivité
et ses composants prédéfinis. Pour une meilleure organisation de mon CSS, j'ai opté pour le
préprocesseur SASS et sa syntaxe SCSS qui permet l'utilisation des variables de Bootstrap.
Pour la partie dynamique, j'ai choisi le langage Javascript et j’ai utilisé Webpack Encore pour
un rendu plus qualitatif.

En ce qui concerne la partie Back-end, j’ai utilisé PHP 8.2.1. J'ai créé ma base de données sur
alwaysdata en utilisant le langage SQL via Doctrine et PHPMyAdmin pour visualiser les
données. Pour le déploiement, j'ai choisi le service PaaS (Platform As A Service) Heroku pour
sa flexibilité et son utilisation simple, ainsi que sa suite logicielle, comme PHP et Composer,
et l'utilisation de Git pour le déploiement. Travailler avec le framework Symfony pour ce
projet a été comme une évidence pour moi du projet restaurant, Quai Antique.

 7

Conception du projet restaurant

1. Mise en place avant l’initialisation du projet

a) Création d’un Google Drive
Google met à disposition un système de stockage à distance gratuit pour différents projets
professionnels ou personnel. Lorsque je devrais conserver les différents fichiers dont je vais
avoir besoin pour ce projet, Google Drive me permettra de les conserver en toute sécurité et
d’éviter de tout perdre si un incident survenait dans mon ordinateur pendant le
développement du projet restaurant. J’ai donc importé les photos que contiendra le site, les
différents diagrammes, la charte graphique, le wireframe et les liens pour le GitHub et Trello.
Puisqu’il s’agit d’un projet pour une Évaluation en Cours de Formation (ECF), j’ai donc choisi
de mettre le Drive en partage pour les personnes ayant l’accès à l’url du Drive. J’aurais très
bien pu le mettre en accès privé également.

b) Création d’un Trello
Voici un service de gestion de projet que j’utilise énormément lors du développement de
l’application. Le Trello me permet d’avoir une organisation très structurée. C’est un système
de cartes et de listes. Il est possible de détailler ou non chaque tâche ou liste. Trello m’offre
la fonctionnalité de voir l’avancement de mon projet dans un visuel clair et précis. Je l’utilise
du début jusqu’à la fin du projet restaurant.

c) Méthode MoSCOW
Dans le Trello, je fais appel à la méthode MoSCOW qui n’est autre que l’acronyme pour Must
have this, Should have this if at all possible, Could have this if it does not affect anything et
Won’t have this time but would like in the future. Traduit en Français cela donne ceux qui
doit être fait, devrait être fait dans la mesure du possible, pourrait être fait dans la mesure
où cela n’a pas d’impact sur les autres et ne sera pas fait cette fois mais sera fait plus tard.

Pour chaque étiquette dans mon Trello, j’assigne une méthode en fonction des priorités que
je vais avoir besoin. Cela me permet d’être en mesure de savoir si une tâche doit être
effectué en urgence ou pas.

 8

2. Les diagrammes UML

a) Diagramme de cas d’utilisation
De manière à définir les fonctionnalités de l’application. Le diagramme de cas d’utilisation
me permettra d’avoir un premier visuel sur les accès selon les différents utilisateurs du site.
Pour le cas du projet restaurant, Quai Antique, il y a trois utilisateurs. Le visiteur qui a un
accès sur toutes les fonctionnalités du site sauf la partie d’auto-complétions du formulaire de
réservation pour le nombre de convives et les allergies mentionnées. Le client, qui a les
mêmes accès qu’un visiteur mais il bénéficie cette fois-ci de l’auto-complétions ainsi que
d’un résumé des réservations en cours ou déjà effectués. Le dernier utilisateur est
l’administrateur. Il a un accès sur toute la partie administrative du site. Il peut modifier,
supprimer ou ajouter du contenu telles que des photos, des plats, des menus et il a la
possibilité de consulter les réservations à venir. Je créé le diagramme de cas d’utilisation
depuis l’application Draw.io. Ce logiciel est facile à prendre en main et dispose d’un onglet
réservé à la phase de conception UML (Unified Modeling Language).

Modifier des informations

<<include>>

Ajouter, modifier ou supprimer des photos

<<include>>

Modifications des horaires

Diagramme de cas d'utilisations

Client

Réserver une table

extension points

nombre convives + mentions allergies

spécifiiés

<<include>>

Formulaire à remplir

Administrateur

Visiteur

Consultation des réservations

extension points

consulter les réservations

<<extend>>

<<extend>>

<<include>>

Connexion

Condition: {visiteur connecté avant formulaire rempli}

extension_point: nombre convives + mentions allergies spécifiés

Créer un compte

Condition: {connecté en tant qu'administrateur}

extension_point: consulter les réservations

Réservation d'une table

Administrateur

connexion

<<include>>

Gestion du site par l'administrateur

 9

b) Diagramme de séquence
En vue d’illustrer un cas précis, celui d’une réservation. Le diagramme de séquence me
permet d’avoir un visuel sur toutes les interactions entre les différents acteurs, comme
l’utilisateur visiteur ou client avec la base de données lors de la réservation. J’utilise le
logiciel Draw.io, en respectant le langage de modélisation graphique orienté objet. Lorsque le
visiteur arrive dans l’espace de réservation, la base est interrogée puis fait le lien pour voir si
un compte est déjà créé. En l’occurrence non pour le cas précis du visiteur. Il n’y aura donc
pas besoin d’afficher les données du nombre d’invités et les allergies mentionnées. Une fois
que le visiteur soumet le formulaire rempli, la base de données est interrogée pour voir si il
reste des places disponibles ce jour ou si une heure n’est pas déjà réservée. Pour le cas du
client, la base de données est interrogée, il reconnait l’utilisateur grâce à son identifiant et
affiche le nombre d’invités et les allergies mentionnées.

Visiteur

réservation Formulaire Base de donnée

demande de réservation

userAccount(account)

compte introuvable

champs à remplir

champs remplis

completedFormFields(form)

forumlaire remplis

validation du formulaire

voir place disponible ce jour

places indisponible pour ce jour

voir place disponible autre jour

place disponible pour l'autre jour

Diagramme de séquence

 10

Client

réservation Base de donnée

demande de réservation

userAccount(account)

compte client trouvé

checkFormFields(form)

forumlaire pré-remplis

validation du formulaire pré-remplis

voir place disponible ce jour

places indisponible pour ce jour

voir place disponible autre jour

place disponible pour l'autre jour

Diagramme de séquence

 11

c) Diagramme de classe
Le diagramme de classe me permet de voir les relations entre les différentes entités, leurs
attributs et leurs méthodes. Pour le cas du restaurant, Quai Antique, je commence par créer
la classe Users qui va contenir tout ce dont aura besoin l’utilisateur lors de son inscription sur
le site. Ces informations sont ensuite répertoriées dans la base de données. Dans le
diagramme, chaque classe possèdes des propriétés avec différents types. Pour une visibilité
publique, j’assigne le préfixe + devant chaque propriété. L’entité Users est en relation avec
l’entité Reservations. Entre chaque relation je dispose des cardinalités (0..*, 1).

Par exemple pour le cas de la relation entre un utilisateur et une réservation, Une réservation
peut être faite par un utilisateur et un utilisateur peut faire zéro ou infini de réservations.
C’est ce qu’on appel une relation ManyToOne. Je fais en sorte de séparer chaque classe dont
les relations ne sont pas forcément liées.

Ce diagramme de classe va être ma principale base lorsque je vais faire la création de mes
entités dans le framework Symfony. Les relations vont être aussi affichées dans ma base de
données avec les clés primaires pour les identifiants de chaque entité et les clés étrangères
qui vont être associés pour chaque relation. L’application web open-source PHPMyAdmin me
permet d’avoir une interface graphique clairement fournit pour examiner cela.

 12

3. Charte graphique

À l’aide du site Figma, je réalise la charte graphique pour la police d’écriture du logo ainsi
que pour l’ensemble de la police d’écriture du contenu. Je n’oublie pas le côté
gastronomique que prône le restaurant. J’ apporte une touche élégante et épuré tout en
gardant un aspect convivial pour tout type de clientèle. Il est important de conserver l’esprit
chaleureux qu’offre la Savoie et pour cela, je suis partie sur une palette de couleur
représentant les spécialités savoyardes avec une nuance de jaune-marron, un peu couleur
sable pour les parties clair du site et une nuance de brun foncé voir marron-foncé pour les
parties plus sombres du site. Le mélange des deux arborent un côté savoyard et chaleureux.
Pour les parties de validation, je respecte un code de couleur vert tirant sur un vert bouteille
rappelant la couleur des bouteilles de vins blanc de la région. Pour tout ce qui est erreurs ou
invalidités je suis partie sur un rouge cerise évoquant la touche dessert.

 13

4. Références et inspirations

Je pioche le plus de références possible en visitant d’autres sites de restaurants déjà
fonctionnels et complet.
Dès qu’un site web vitrine d’un restaurant m’inspire, je n’hésite pas non plus à aller voir le
code dans la console du navigateur.
J’essaie de garder une cohérence avec des sites gastronomique pour voir leur style et
pouvoir les utiliser dans ma maquette.

 14

5. Les Wireframes

Pour le maquettage, je réalise tout le travail avec l’outil Figma. Le Wireframe me permet
d’avoir une visualisation préliminaire sur les différents besoins du Chef Michant pour le
restaurant Quai Antique.
Je laisse volontairement le schéma en noir et blanc car il peut y avoir des changements qui
peuvent survenir au cours du développement pour la partie front-end, notamment en CSS. Je
propose deux types de Wireframes, l’un pour le Desktop donc tout ce qui est visible depuis
un écran d’ordinateur et une autre pour le Mobile lorsque l’application va être visualisée
depuis un smartphone.
N'ayant pas encore défini chaque paragraphe ou titre pour le site, j’utilise du Lorem ipsum.
C’est un excellent moyen de gagner du temps sur les blocs de paragraphe lors de la
conception du site. Je peux également voir ce que cela rend avec la police d’écriture choisit
dans la charte graphique.
Voici dans sa version Desktop le Wireframe pour la page d’accueil du site.

 15

Et voici dans sa version Mobile divisé en trois du Wireframe pour la page d’accueil du site.

 16

Initialisation du projet restaurant

1. Les prérequis

Afin de bien démarrer la partie technique du projet, je m’assure d’avoir tous les prérequis
nécessaires avec le framework Symfony.
Avec la documentation Symfony, dans l’onglet d’installation, Symfony me montre les versions
et outils à avoir.
Depuis le terminal, en ligne de commande, je peux voir quelle est ma version du langage PHP
d’installé sur mon ordinateur. Je peux voir aussi si je dispose bien de Composer, l’outil de
gestion de dépendances pour PHP. Composer me facilitera la mise en place du projet
Symfony en automatisant l’installation des dépendances requises et en garantissant leur
compatibilité avec le framework.
Je peux également observer si tous les prérequis nécessaires à l’exécution de l’application
Symfony sont satisfaites sur le serveur où l’application est déployée avec la commande.

Cette commande effectue une série de tests pour s’assurer que la version de PHP installée
sur le serveur répond aux exigences minimales de Symfony.

Avant même d’en avoir l’utilité, je vérifie aussi si node.js est installé. Node.js n’est pas une
composante native de Symfony mais plutôt une technologie externe basée sur le moteur
Javascript V8 de Google qui peut être utilisée avec Symfony pour améliorer les
fonctionnalités de développement front-end de l’application en exécutant du code Javascript.
Avec Node.js d’installé, je peux ainsi me servir du gestionnaire packages NPM (Node Package
Manager) qui me permet d’automatiser le processus de compilation des fichiers CSS,
Javascript et autres, d’installer des modules et dépendances tiers.

 17

2. Création du nouveau projet Symfony

Depuis mon terminal, je m’assure d’être dans le bon dossier ou je veux créer le projet
Symfony. Je choisi la version LTS(Long-term support) de Symfony car elle me garantit jusqu’à
fin 2024 un support de sécurité à long terme en réduisant le risque de failles de sécurité et
assurant la compatibilité avec les nouvelles versions de PHP.
Je me renseigne auprès du services releases de Symfony pour un détails des versions de
Symfony.
Voulant disposer d’un squelette d’application Symfony prêt à l’emploi déjà préconfiguré avec
les packages couramment utilisés pour le développement web, tels que Twig pour le rendu
des templates, Doctrine ORM pour la gestion de la base de données, je décide d’introduire
l’option « --webapp ».

Symfony me créer automatiquement plusieurs dossiers dont un dossier caché .git à la racine
du projet pour initialiser un dépôt Git afin de suivre les modifications apportées et gérer la
synchronisation du code. Il créé une branche master qui va être ma base sur le lequel chaque
nouvelle branche apportent des modifications au projet vont être fusionnées. La branche
master me sert également pour le déploiement de l’application.

Dans la foulé, je crée un dépôt distant à l’aide de la plateforme web GitHub. Le dépôt distant
dit Repository m’assure un stockage, partage et une collaboration au projet restaurant, Quai
Antique. Une fois qu’une tâche est accomplie, que les branches ont fusionné côté local, il me
suffit de pousser « push » les modifications apportées sur Github côté distant. Ainsi le code
du projet va être vue par d’autre développeurs voulant reprendre mon code à condition que
le Repository soit public.

3. L’environnement de développement et les extensions

Pour l’IDE (Integrated Development Environment), j’utilise Visual Studio Code (VSCode). Cet
outil va être mon principal logiciel pour les phases d’écriture du code, de test, débogue et de
développement du projet restaurant.
Je n’oublie pas que VSCode me fournit une multitude d’extensions pour me simplifier
certaines tâches.
J’utilise principalement le plugin PHP Intellisense pour améliorer la fonctionnalité
d’autocomplétions du code PHP en fournissant des suggestions de code plus précises et plus
rapides. Pour une assistance à la programmation du moteur de template Twig, j’utilise le
plugin Twig et Twig Language 2. La colorisation syntaxique et l’autocomplétions aident
énormément pour l’écriture du code.

 18

4. Création du fichier readme.md

À la racine de mon projet dans l’IDE, je crée un fichier readme.md. Ce fichier est
essentiellement prévu sur les démarches à suivre pour l’exécution en local du projet
restaurant, Quai Antique. Plusieurs informations vont être listées dans ce fichier. Ainsi,
d’autres développeurs peuvent suivre les étapes depuis le readme qui est en visible depuis le
dépôt distant de la plateforme web GitHub.
Généralement je liste chaque étape au fur et mesure que le projet avance. Une fois qu’une
étape est terminée, j’écris la démarche à suivre dans le readme.

Organisation par branche avec Git

Pour conserver un projet cadré et structuré, je crée des nouvelles branches pour chaque
partie différente lors du développement. Par exemple pour l’installation de nouveaux outils
ou bibliothèque dans le projet Symfony, je créé une nouvelle branche qui commence
toujours par feat, pour features.

Sur chaque changement apporté à la partie template par exemple, je suis positionné sur
cette branche, ainsi je peux modifier le contenu que je souhaite sans casser ce qui va être sur
la branche master ou d’autres branches. Il me suffit de fusionner la branche sur laquelle je
viens d’effectuer des modifications avec la branche master.

Mise en place d’autres outils

1. Webpack Encore

Afin d’apporter de l’efficacité et des performances au projet, j’installe l’outil de build
Webpack Encore. Symfony met à ma disposition une formidable documentation. En utilisant
Webpack Encore, je peux simplifier le processus de création de l’application web, améliorer
les performances et optimiser la taille du fichier final, ce qui améliore l’expérience utilisateur
en réduisant les temps de chargement.
Cela créer un fichier webpack.config.js à la racine du projet afin d’injecter les différents outils
que me permet de fournir Webpack Encore.

2. Préprocesseur SASS, SCSS

Comme Webpack Encore me fournit une facilité à la compilation, j’installe le préprocesseur
SASS qui me permet d’écrire des feuilles de style CSS plus facilement et efficacement en
ajoutant des fonctionnalités telles que les variables, les fonctions, les mixins et bien d’autres.
J’opte pour une syntaxe alternative, le SCSS.
Le SCSS se rapproche plus du langage CSS. C’est surtout un choix purement personnel et une
question d’habitude.
Pour chaque modification apporté au projet dans les fichiers SCSS, il me suffit depuis le
terminal d’exécuter la commande suivante :

 19

Ou bien

Cette dernière commande m’évite de réécrire la ligne de commande pour la compilation à
chaque modification SCSS ou Javascript enregistré, mais doit être arrêter avant de refermer
l’IDE.

3. Postprocesseur PostCSS et autoprefixer

Une fois de plus la documentation Symfony m’offre la possibilité d’obtenir dans le projet
Symfony un outil me permettant d’appliquer des transformations automatisées sur du code
CSS. Dans le projet il est surtout utile à la gestion des préfixes de navigateurs avec le plugin
Autoprefixer pour un rendu visuel identique sur les tous les navigateurs.
Le fichier postcss.config.js est créer à la racine du projet. J’insère le code suivant à l’intérieur
du fichier :

4. Référencer des images

Dans la continuité de l’amélioration pour l’expérience utilisateur, référencer des images à
partir d’un modèle fournit des images pertinentes et de haute qualité pour l’illustration des
pages du site web. Je peux également rendre un processus de gestion des images plus
efficace en permettant la réutilisation des images et en évitant la duplication des images
pour chaque page.
Dans le fichier webpack.config.js je mets le code pour le package du file-loader :

 20

Ce code a pour objectif de copier le nom des fichiers généré dans le code HTML depuis la
balise img assets/images vers le répertoire public/build/images. J’y inclus un hachage basé
sur le contenu. Si un fichier d’image est modifié à l’avenir, le hachage sera également
modifié, ce qui signifie que le nom de fichier de l’image dans le code HTML changera
également.
Voici un exemple dans le code HTML :

5. Bootstrap 5

Le framework open-source front-end Bootstrap m’offre la possibilité d’obtenir un côté
responsives et adaptatifs avec une bibliothèque complète de styles CSS préconçus. Son
système de class efficace, intuitif et son style m’assure un meilleur rendu au point vu de
l’expérience utilisateur.
La documentation sur le site de Bootstrap est très bien conçue et rapide à prendre en main.
En suivant les étapes sur la documentation de Symfony, il me suffit de copier les codes
suivants dans les dossiers d’assets pour le Javascript et le SCSS :

Pour compiler le tout je fais la commande : npm run build

 21

Création du premier Controller

1. Première route pour la page d’accueil

Les éléments clé de l’architecture de Symfony sont les Controller. À l’aide de Symfony CLI
(Symfony Command Line Interface) qui me permet de faciliter le développement en ligne de
commande comme:

symfony console make :controller

Je crée directement le fichier HomeController pour ma page d’accueil du site. Pour vérifier
son bon fonctionnement, je redirige la route vers un chemin dans l’url qui finit par « / »
Avec le lancement du serveur Symfony :

symfony serve -d

J’ai un premier visuel en local sur le port suivant :

2. Méthode render()

Cette méthode permet d’avoir le rendu du fichier html.twig :

Dans le dossier templates figure le fichier base qui sert généralement de modèle de base
pour toutes les autres pages du site web. Ce fichier comporte les éléments communs à
toutes les pages du site, tels que la structure de base, les en-têtes, les pieds de page, les liens
vers les fichiers Javascript et CSS.
Le chemin dans la méthode render() renvoi à un dossier nommé « home » qui est composé
d’un fichier intitulé « index.html.twig ». Dans ce template figure le code en HTML 5 et les
class Bootstrap ou les class créer avec la méthode de structuration HTML appelé BEM (Block
Element Modifier).

 22

Mise en place de la base de données

1. Création du compte alwaysdata

La plateforme d’hébergement web alwaysdata m’offre des services de serveurs virtuels
privés(VPS), d’hébergement mutualisé et une gestion de base de données. Je crée un compte
sur ce service afin d’avoir une interface utilisateur conviviale avec PHPMyAdmin, une
sécurité et sa compatibilité avec PHP et d’autres technologies.

2. Création de la base de données

J’utilise le Symfony CLI pour la création de base données avec doctrine depuis le terminal de
VSCode. Doctrine me permet de travailler avec la base de données de manière orienté objet.
Doctrine m’est utile pour le mapping objet-relationnel(ORM) qui me permet de faire le lien
entre mon code dans l’application et ma base de données.

le D pour Doctrine, D pour Database et C pour Create.
Lorsque la commande est lancée, j'observe la présence d'une base de données sur la
plateforme web alwaysdata, comprenant une table vide portant le nom du projet Symfony.

3. Changer les variables d’environnement

À la racine de mon projet il y a un fichier intitulé .env qui stocke les variables
d’environnement de l’application. Ici vont être entreposé le nom, mot de passe et serveur de
la base de données. Cependant comme le fichier .env est versionné, c’est-à-dire que git
enregistre les modifications apportées à ce fichier dans le dépôt local et distant. Pour
contourner cela je créé un second fichier toujours à la racine du projet depuis VSCode que je
nomme .env.local qui celui-ci ne va pas versionné.

Le fichier .env.local est grisé donc pas pris en compte par git.
Comme j’utilise la plateforme web alwaysdata avec l’interface PHPMyAdmin, dans la page
d’accueil du serveur dans l’onglet Database server, ce trouve toutes les informations
essentielles pour changer le DATABASE_URL dans le fichier .env.local.
Il faut modifier le type de serveur à savoir MariaDB qui est le même système de gestion de
base de données que MySQL excepté que MariaDB offre une sécurité et des performances
supplémentaire.
Il faut modifier également le nom de l’utilisateur de la base de données, le mot de passe, le
host qui est l’adresse du serveur de la base de données.
Ce sont des données confidentielles pour le projet donc c’est pour cela que je créé un second
fichier pour les variables d’environnement.

 23

Création des entités

Cette étape est très importante car elle détermine précisément les tables et relations dans la
base de données utilisée par l’application Symfony. J’utilise également le système de
Symfony CLI en ligne de commande.

1. Création de l’entité Users

Je commence par créer l’entité « Users » avec la commande suivante :

Je me base sur le diagramme de classe - UML Relationnel que j’avais créé précédemment. Il
me suffit de suivre les étapes proposées. Le make :user génère automatiquement une
nouvelle classe utilisateur avec des propriétés de base tel que l’identifiant, l’adresse email, le
mot de passe et le rôle. Il me suffit par la suite de taper la commande en suivant les étapes
de :

pour générer d’autres propriétés tel que le nom, le prénom, l’adresse, le code postal, la ville,
le nombre d’invités et les allergies mentionnées comme l’indique le diagramme de classe -
UML Relationnel. Lors de l’inscription d’un utilisateur, il est impératif de suivre la consigne du
Chef Michant, qui stipule que l’utilisateur doit pouvoir bénéficier d’une fonctionnalité
d’autocomplétion pour le nombre d’invités et les allergies mentionnées, à condition qu’ il ait
rempli ces informations dans le formulaire.

2. Créations des autres entités

Je continu le même procéder pour chaque table de mon digramme de classe.
Je n’oublie pas la relation ManyToOne entre l’entité Reservations et l’entité Users, ainsi
qu’entre Dishe et Categorie, Images et Categorie puis Menus et CategorieMenus qui sont
aussi des relations ManyToOne.

 24

3. Les migrations

Afin de refléter l’état actuel de la base de données, la commande utilisant
DoctrineMigrationsBundle génère une classe de migration. Cette migration est stockée dans
le dossier migrations de l’application Symfony.

À l’aide des commandes SQL générées par l’API de création de schéma de Doctrine, deux
méthodes sont contenues par la classe « AbstractMigration ». Dans la méthode up(), chaque
commande « CREATE TABLE » définit les colonnes de la nouvelle table ainsi que le type de
données et contraintes pour chaque colonne. Pour le méthode down(), les opérations
inverses sont effectuées, ce qui signifie que les tables sont supprimées. Les contraintes de clé
étrangère sont supprimées en premier pour éviter toute erreur.

4. Appliquer les migrations

Pour pouvoir exécuter les migrations de doctrine vers la base de données alwaysdata, je
procède toujours avec le Symfony CLI en ligne de commande :

D pour Doctrine, M pour Migrations et le dernier M pour Migrate.
Cette commande parcoure toutes les migrations en attente et exécute dans l’ordre en
mettant à jour la structure de la base de données alwaysdata.

 25

Voici une vue des tables depuis PHPMyAdmin de la base données :

Voici une vue des tables de la base de données depuis la ligne de commande MySQL :

 26

Réalisation des tests unitaires

En vue de m’assurer que chaque classe fonctionne correctement, je réalise des tests
unitaires depuis l’outils PHPUnit. Je crée des cas de test qui vérifient que les méthodes, les
fonctions ou les classes fonctionnent comme prévu.
Je vérifie en tout premier si PHPUnit est bien installé avec la commande :

Je vérifie également si figure le fichier phpunit.xml.dist depuis la racine du projet.
Je continu avec le système que me propose Symfony CLI en ligne de commande pour créer les
tests unitaires avec la commande :

Je renomme chaque fichier de test que je crée avec le nom de la table en premier suivit par
UnitTest.
Exemple : UsersUnitTest

Pour chaque test je crée toujours trois public function :
. un pour vérifier si le test est vrai = testIsTrue()
. un pour vérifier si le test est faux = testIsFalse()
. un pour vérifier si le test est vide = testIsEmpty()

Pour chaque public function je reprends les fonctions « set » qui sont répertorié dans le fichier
des entity.
Exemple pour le « lastname » dans le fichier entity « Users » :

Repris dans la fonction testIsTrue() du fichier de test unitaire de « Users » (UsersUnitTest) :

 27

Une fois les codes écrit, je vérifie si les tests fonctionnent correctement. La commande :

me permet d’avoir un format de documentation lisible et facile à comprendre grâce au
testdox.
Voici un exemple de test unitaire réussit au format testdox :

 28

PARTIE FRONT - La page d’accueil

1. Les Pages HTML

Depuis le dossier templates, je crée un sous-dossier intitulé « base ». À l’intérieur de ce dossier
je crée deux fichiers, un fichier « navbar.html.twig » pour la barre de navigation et un fichier
« footer.html.twig » pour le pied de page. Il est stipulé par le Chef Michant que le pied de page
doit être sur chaque page du site. Je décide de faire de même pour la barre de navigation.

Dans le fichier « base.html.twig » j’inclue les deux fichiers du dossier « base » dans la balise
<body>.

Désormais, pour chaque fichier twig créé dans le dossier templates, va être incrusté la barre
de navigation en haut de la page et le pied de page.
Entre les deux il va toujours y avoir le block body.

Ensuite je crée un sous-dossier intitulé « home » dans le dossier « templates ». Ce dossier
contient trois fichiers twig. Un des trois fichiers a pour nom « index.html.twig ». Dans ce
fichier figure le modèle de base qui est inclue. Le fichier « index.html.twig » hérite du modèle
de « base.html.twig ». Ensuite entre le block body est inclue un fichier pour une partie de la
page d’accueil et l’autre pour une deuxième partie. J’ai volontairement séparé ces fichiers
pour m’éviter d’avoir un seul fichier trop lourd.

 29

J’inclus dans le Controller « HomeController » à la méthode render() le chemin ou va être
redirigé la route que je nomme « app_home » avec comme url « 127.0.0.1:8000/. »

Le fichier « cover » et « preview-galleries.html.twig » ont un schéma classique html. On
retrouve les class avec la méthode de structuration HTML appelé BEM (Block Element
Modifier) ainsi que les class prédéfinies du framework Bootstrap. La particularité que m’offre
Bootstrap est son côté responsive grâce à ses class :

Ce système extrêmement simplifié m’évite de surcharger mes feuilles de style CSS ou plus
particulièrement SCSS avec le préprocesseur.

2. Les fichiers SASS (SCSS)

a) L’ architecture SASS
Pour suivre les bonnes pratiques d'organisation des fichiers Sass, j'importe en premier lieu
les variables de couleurs proposées par Bootstrap et les adapte aux couleurs de la charte
graphique. Je modifie également le nom de certaines variables pour pouvoir utiliser des class
Bootstrap avec des couleurs prédéfinies. Ensuite, j'importe les fichiers CSS nécessaires en
spécifiant le chemin approprié.

Pour suivre les conventions de Sass, je crée un dossier « scss » dans le dossier « styles », qui
contient des sous-dossiers pour chaque type de code. J'applique les bonnes pratiques en
créant un dossier « atoms » pour les styles de boutons de l'application, un dossier « base »

 30

pour le reset CSS, un dossier « components » pour chaque partie du site (comme la page de
connexion, la page de la carte, etc.), et enfin un dossier « utils » pour les variables et mixins.

b) Mise en œuvre fidèle de la maquette
Je m’efforce de suivre fidèlement la mise en page des éléments telle qu’elle est présentée
sur la maquette, afin de garantir une cohérence stylistique sur l’ensemble de la réalisation.
Pour un visuel sur mon navigateur web en local, j’exécute la commande suivante :

Cette commande me permet de lancer le serveur web intégré de Symfony en arrière-plan.
L’utilité de « -d », qui signifie « détaché », donne la possibilité de laisser le serveur en marche
pendant que je continue à travailler sur le code de l’application. Je peux aussi continuer à
utiliser le terminal sans interrompre le serveur.

c) Compilation des fichiers CSS
Lorsque je sauvegarde mon travail avec « command + s », les fichiers SCSS doivent être
compilés en fichiers CSS lisibles par le navigateur.

Pour m’éviter d’exécuter cette commande à chaque fois, j’utilise la commande suivante :

PARTIE FRONT - Les autres pages

1. Création d’autres Controllers

Pour associer chaque élément du menu de la barre de navigation à une URL spécifique dans
Symfony, je crée un Controller dédié pour chaque page. En définissant ainsi les routes
associées à chaque Controller, Symfony est capable de diriger les requêtes HTTP vers le
Controller approprié et donc d’afficher la page correspondante.

 31

Exactement, tout comme le premier Controller « HomeController », les autres Controllers
dans Symfony génèrent également une réponse HTTP en utilisant la méthode render() qui
renvoie un template Twig pour produire la page HTML à afficher. Cette méthode permet
d'injecter des données dynamiques dans la page à partir du Controller, en utilisant le
système de variables de Twig.

J'utilise la directive {% extends %} en haut de chaque fichier Twig pour étendre un template
de base et y inclure des blocs spécifiques. Je prends une habitude d’avoir recours aux
méthodes de structuration HTML BEM, ainsi qu’aux class prédéfinies du framework
Bootstrap dans les fichiers du dossier templates de l’application.

2. Utilisation des variables Twig

Dans le but d'éviter une surcharge et une répétition du code dans les fichiers Twig, j'utilise
les variables fournies par Twig avec une syntaxe pour les instances de classe des entités
associées qui contiennent les propriétés. Par exemple, si j’affiche le nom de chaque
catégorie dans un fichier Twig, j’utiliser la syntaxe Twig `{{ categorie.name }}`. Ainsi, j’ai accès
à la propriété « name » de chaque objet « Category » pour afficher le nom de chaque
catégorie. Cela permet de générer dynamiquement la page HTML en itérant sur la collection
des catégories dans le contrôleur et en passant les informations nécessaires à la vue.

J'utilise des boucles pour parcourir des variables et itérer sur chaque objet dans une
collection, ce qui me permet d'afficher leur contenu de manière dynamique dans mon code.

 32

3. La police d’écriture

J’importe depuis le site web de Google fonts, la même police d’écriture que celle choisit
depuis la charte graphique et le Wireframe dans la balise <head> de mon fichier
« base.html.twig ».

4. Intégration d’images SVG

a) Les symboles
Depuis le site web de Bootstrap, je télécharge les symboles directionnels que je vais avoir
besoin sur les pages du site afin de guider l’utilisateur et bénéficier d’une meilleure
expérience utilisateur. C’est un fichier SVG (Scalable Vector Graphics), que je redimensionne
sans perdre en qualité lors du responsive.

b) Les icônes
Dans le cadre de la conception du pied de page, des icônes pour les réseaux sociaux sont
nécessaires. Je les télécharge également depuis le site Bootstrap. Ces icônes permettent aux
utilisateurs d'identifier et de cliquer sur les réseaux sociaux correspondants s'ils souhaitent
les suivre ou les consulter.

 33

5. Les chemins d’accès

Dans la liste des différents menus qui compose la barre de navigation, figure les fonctions
path() Twig remplaçant l’attribut « href », en vue de générer une URL correspondant à une
route.

J’utilise cette même fonction path() sur les symboles SVG lorsqu’un utilisateur clique sur une
flèche directionnelle pour se rendre à une autre page du site web.

Gestion de l’authentification et autorisation

Pour permettre à un utilisateur de se connecter à un compte afin d’obtenir un formulaire
prérempli pour le nombre de convives et les allergies mentionnées lorsqu’il fait une
réservation, la commande suivante génère les fichiers nécessaires pour mettre en place un
système d’authentification :

En plus de gagner du temps en automatisant la création de classes et de fichiers, cette
commande créer un fichier « SecurityController.php » avec un système de login et log out.

Dans le dossier « src/Security », je décommente depuis le fichier
« UsersAuthenticatore.php », dans le « public function onAuthenticationSuccess », la
redirection lorsqu’une connexion est valide et je commente l’exception :

Une fois cette étape accomplie , je redirige l’utilisateur connecté vers la page d’accueil de
l’application Quai Antique. Je modifie quelques class et phrases depuis le HTML du fichier
« UsersAuthenticator.php » dans le templates en vue de conserver une cohérence avec les
thèmes, les couleurs et le style.

 34

L’API ‘IntersectionObserver’

Afin d’avoir un rendu dynamique sur l’interface web pour l’expérience utilisateur, l’API
« IntersectionObserver » utilisant du Javascript permet d’ajouter un attrait visuel avec des
effets sur les éléments lors du défilement de la page.
Le code suivant crée une instance de l'API IntersectionObserver() pour détecter quand des
éléments avec la classe « reveal » entrent dans la zone d'intersection avec la racine de la
page web. Lorsque la proportion de l'élément visible est supérieure à 0,1, la classe « reveal-
visible » est ajoutée à l'élément et l'observation de l'élément est arrêtée.

J’ai découvert cette API sur le site web de Mozilla. Une documentation est très bien fournie
pour mettre en place cette API dans le projet.

Création du formulaire d’inscription

Pour une expérience utilisateur cohérente, la création d'un compte est généralement
nécessaire avant de pouvoir se connecter à une application.
La commande suivante génère automatiquement un formulaire de création de compte, qui
va être personnalisé en fonction du code graphique que je propose pour l'application Quai
Antique :

 35

La commande offre différentes options, comme l'envoi d'un e-mail à l'utilisateur après son
enregistrement, que je choisis de ne pas utiliser.

Symfony crée un dossier « Form » contenant un fichier nommé
« RegistrationFormType.php ». Ce fichier contient le formulaire que je modifie selon mes
besoins.
L’objet $builder est utilisé pour définir les champs du formulaire de création de compte.
J’utilise la méthode add() qui me permet d’ajouter un champ de formulaire en spécifiant le
type de champ et les options qui lui sont associées. Lorsque le formulaire est soumis, le
$builder utilise des options globales de PHP (POST, GET, etc,).

Une fois qu’un utilisateur est inscrit depuis le formulaire valide de l’application web, le code
suivant récupère les données entrées par l’utilisateur pour le nombre d’invités et les allergies
mentionnées. Si l’utilisateur est connecté, ses informations sont mises à jour avec les
données récupérées et la méthode flush() est appelée sur l’objet $manager pour enregistrer
les modifications dans la base de données.

 36

Pour le bon fonctionnement du code dans les fichiers Controllers, Form, Entity ou autres.
Symfony utilise un système d’importation de classes et des namespace avec l’instruction use
qui sont nécessaires. Ces dépendances m’évitent de spécifier le chemin complet pour les
classes appelées dans un fichier à chaque fois.
voici un exemple des dépendances utilisées avec le fichier « RegistrationFormType.php » :

L’extension « PHP Intelephense » depuis mon VSCode m’aide pour trouver les bonnes
dépendances en haut de mes fichiers :

 37

L’ utilisateur connecté

1. les rôles

Avec l’annotation « [ORM\Column] », la propriété $roles est stockée automatiquement dans
une colonne de la table de la base de données grâce à Doctrine. La valeur [‘ ROLE_USER‘] est
initialisée.

C’est en décommentant l’accès suivant pour la route de l’URL /profile et par le système
d’authentification de Symfony en se basant sur un utilisateur enregistré dans une base de
données que cela permet de sécuriser l’accès à certaines parties de l’application web.

Il y a deux rôles attribués dans mon application, un pour l’utilisateur connecté et un pour
l’administrateur :

2. les conditions

En fonction du rôle de l’utilisateur dans le projet restaurant, Quai Antique. J’utilise dans le
fichier ou l’on retrouve les menus de la barre de navigation, une condition Twig.
Le code vérifie si l’utilisateur connecté possède le rôle ‘ROLE_ADMIN’ ou ‘ROLE_USER’ et
avec la fonction is_granted() comme aide je redirige l’utilisateur connecté.

 38

L’utilisateur est redirigé vers une page en fonction de son rôle.
Pour l’administrateur qui détient le rôle admin, il y a un accès à la gestion de contenu
administration depuis un bouton ainsi qu’un autre bouton pour se déconnecter.

Pour le l’utilisateur qui a le rôle user, il a un accès à un bouton de déconnexion ainsi qu’à un
bouton pour l’accès à son contenu de réservations afin qu’il consulte les réservations déjà
effectuées.

Formulaire de réservation

1. Les contraintes du Chef

Le Chef Michant souhaite pour une réservation, que les utilisateurs soient informés du
nombre de places disponibles par tranche de 15 minutes, entre l'ouverture et la fermeture
du restaurant, tout en respectant un seuil maximum de convives par jour.

2. Le Controller de réservation

Je crée un Controller qui stock toutes les conditions, fonctions et contraintes nécessaires
pour assurer le bon déroulement d'une réservation pour l'utilisateur.

3. Le FormType pour la réservation

Le code du formulaire de réservation utilise des fonctions anonymes pour récupérer les
entités à afficher dans les champs du formulaire pour le nombre d’invités et les allergies
mentionnées lorsqu’un utilisateur est déjà connecté.

 39

L’objet EntityRepository est fourni par le système de gestion d’entités de Doctrine, qui est
utilisé par Symfony pour gérer la persistance des données. La fonction anonyme passe
ensuite comme argument de la méthode query_builder, permettant de définir une requête
personnalisée afin de récupérer les entités à afficher dans le champ correspondant.

4. Le fichier Service

Pour m’éviter une surcharge du code dans le fichier « ReservationsController.php », je crée
un dossier « Service » qui contient un fichier « ReservationService.php ». Les objets qui sont
dans ce fichier sont instanciés et injectés dans le « ReservationsController.php ».

5. Les conditions, fonctions et contraintes

a) Vérification du formulaire soumis
Dans un premier temps je crée un nouvel objet pour la réservation. Cet objet représente une
réservation et stocke les données saisies dans le formulaire. Ensuite le
« ReservationsFormType.php » est associé à l’objet $reservations. La
méthode $reservationForm->handleRequest($request) est appelée pour traiter la requête
http associé au formulaire. Cette méthode vérifie si le formulaire est bien soumis et si les
données saisies sont valides. Elle met à jour l’état de l’objet $reservations avec les données
saisies dans le formulaire.
Enfin si le formulaire est soumis et valide alors le code contenu dans le bloc « if » est exécuté.
Dans ce cas, l’objet $reservations est récupéré à partir du formulaire en utilisant la méthode
$reservationForm->getData(). Cet objet est ensuite ajouté à la base de données pour
sauvegarder la réservation.

b) La date, l’heure et le seuil
Le code suivant vérifie les conditions pour une réservation. La date et l’heure de la
réservation sont récupérées à partir de l’objet $reservations. Ensuite, le jour de la semaine
correspondant à la date est vérifié, en respectant les horaires du restaurant. si celui-ci est un
dimanche alors j’attribue 0, si c’est un autre jour de la semaine, alors c’est 1. Un message
flash() est envoyé en cas d’erreur.
Ensuite, le code vérifie si le nombre total de convives pour cette date est supérieur ou égal à
celui que j’ai mentionné, en l’occurrence 40. Si c’est le cas, cela signifie que le restaurant a

 40

atteint sa capacité maximale pour cette journée et comme pour la date et l’heure vérifié, un
message via message flash() est envoyé au client en cas d’erreur. Sinon, si le nombre de
places disponibles est calculé en soustrayant le nombre total de convives pour cette date à la
capacité maximal du restaurant, soit 40.
Si le nombre de places disponibles est compris entre 1 et 4 inclus, un message flash()
d’avertissement au couleur de la variable $warning de Bootstrap est envoyé à l’utilisateur
pour l’en informer. En revanche, si le nombre de places disponibles pour cette journée est
égale à 0, dans ce cas-là, un message d’erreur de la couleur que j’ai attribué pour la variable
$danger de Bootstrap est envoyé au client aussi. Sinon, si aucune des actions précédentes
est entreprise alors le processus de création de réservation continue.

Dans le fichier « ReservationService.php », je créé les fonctions pour trouver les réservations
par date et heure, le nombre d’invités par date, les places disponibles par dates.

Avant tout, je défini un constructeur qui prend en compte des classes PHP en paramètre
d’entrée.
L’objet $manager implémente l’interface EntityManagerInterface afin d’interagir avec la
base de données. L’objet $security implémente la classe Security pour gérer les
autorisations d’accès des utilisateurs connectés à l’application. L’objet
$reservationRepository implémente la classe ReservationsRepository pour récupérer les
données à partir de la base de données pour les réservations effectuées. L’opérateur $this
assigne chaque propriétés des classes correspondantes.

 41

La méthode publique findReservationByHOur(), prend en compte deux paramètres
d’entrée ($hour et $date). La méthode retourne un tableau d’objets de type Reservations.
La méthode createQueryBuilder() permet de créer un nouvel objet de la classe
QueryBuilder() de Doctrine. Je spécifie les colonnes que je souhaite récupérer dans la
requête à l’aide de la méthode SQL select() qui a comme alias ‘r’ pour la table des
Reservations. J’utilise from(Reservations::class, ‘r’) pour indiquer la table à partir de laquelle
je veux récupérer les données. Afin de spécifier les conditions de filtrage des résultats,
j’utilise where() et andWhere() pour récupérer les réservations qui ont une date égale à
$date et une heure égale à $hour. Les conditions sont définies en utilisant setParameter()
pour attribuer les valeurs aux paramètres de la requête. Enfin, j’appelle la méthode
getQuery() pour finaliser la construction de la requête. Les résultats sont envoyés sous forme
d’un tableau d’objets de type Reservations.

Le code suivant prend en paramètre l’objet $date qui implémente l’interface
\DateTimeInterface de la méthode publique countGuestsByDate(), retourne un entier
représentant le nombre total d’invités pour la date spécifiée. Afin de formater la date au
format « Y-m-d » et de la stocker dans la variable $formattedDate, la méthode format est
appelée sur l’objet $date. Ensuite, la méthode createQueryBuilder() est appelée sur l’objet
$this->reservationRepository pour créer une requête de type select sur la table des
réservations. Cette méthode est utilisée pour sélectionner la somme totale de tous les invités
dans les réservations pour la date spécifiée. getQuery() est utilisé pour obtenir l’objet
Querybuilder générer à partir de la requête et la méthode getSingleScalarResul() appelée
pour exécuter la requête et récupérer le nombre total d’invités pour la date spécifiée.

 42

Le code pour la méthode publique getAvailablePlacesByDate() prend en paramètre d'entrée
l’objet DateTime qui représente la date pour laquelle le nombre de places disponibles doit
être calculé. Je commence par formater la date en utilisant $date->format(‘Y-m-d’) afin
d’obtenir une chaîne de caractères représentant la date au format ‘Y-m-d’ (année-mois-
jour).Je crée ensuite un nouvel objet de la classe QueryBuilder() en utilisant
createQueryBuilder() pour construire la requête SQL.
Je sélectionne la somme des nombres d’invités avec l’alias ‘reservedPlaces’ depuis la table
de Reservations utilisant un alias ‘r’ pour la représenter. Je récupère la date des réservations
qui ont une date égale à la date spécifiée dans la requête. Je définie la valeur du paramètre
$formattedDate qui est attribué au paramètre ’ :date’. Je finalise la construction de la
requête et exécute la requête en appelant getSingleScalarResult() pour qu’elle renvoie une
valeur unique donc la somme des nombres d’invités. Je soustrais le nombre total de places
disponible, à savoir 40, au résultat. La méthode retourne le nombre de places disponibles
calculé.

c) Garantir que chaque réservation est unique
Dans le « ReservationsController.php », je vérifie si d’autres reservations existe déjà pour une
même date et une heure différente.

 43

Ce code effectue deux vérifications pour s'assurer qu'une réservation est unique avant de
l'ajouter à la base de données.
La première vérification utilise la méthode findReservationsByDateAndDifferentHour() du
« ReservationService.php » pour rechercher d'autres réservations pour la même date mais à
une heure différente. Si d'autres réservations sont trouvées, un message d'erreur est ajouté
et l'utilisateur est redirigé vers la page de réservation.

La deuxième vérification utilise la méthode findReservationsByHour() toujours depuis
« ReservationService.php » pour rechercher d'autres réservations pour la même heure. Si
d'autres réservations sont trouvées, un message d'erreur est ajouté avec les heures déjà
réservées et l'utilisateur est redirigé vers la page de réservation.

Si aucune réservation conflictuelle n'est trouvée, la réservation est ajoutée à la base de
données et l'utilisateur est redirigé vers la page de réservation avec un message success.

d) Comparaison des heures par rapport à la base de données
Le code suivant vérifie si toutes les heures d'ouverture pour une journée spécifique ont été
réservées en comparant les heures d'ouverture disponibles dans la base de données avec les
heures déjà réservées pour la journée en question.
Si toutes les heures d'ouverture ont été réservées, le code affiche un message d'erreur à
l'utilisateur et le redirige vers la page de réservation.

 44

e) La méthode persist() et flush()
Le code suivant est une méthode qui prend un objet Reservations en argument et
l'enregistre dans la base de données.
Avant l'enregistrement, la méthode utilise le service Security pour récupérer l'utilisateur
actuel connecté et l'associe à la réservation en cours. Ensuite, la méthode utilise l'objet
EntityManager pour ajouter la nouvelle réservation à la base de données en appelant la
méthode persist() et enfin, elle applique les changements en appelant la méthode flush().

La fonction persistReservation() est injectée dans le fichier ReservationsController puis
retourne un message flash() en cas de succès en redirigeant le tout sur l’URL
« app_reservations ».

 45

Fixtures et utilisation de FakerPHP

Avec les fixtures je créer des données préétablies pour alimenter ma base de données de
façon fictives. Je vérifie si les relations fonctionnent correctement entre les tables de la base
de données avec les identifiants depuis l’interface de PHPMyAdmin sur la plateforme web
alwaysdata.
Je peux également le voir en ligne de commande avec le langage SQL mais pour gagner du
temps lors des tests pendant la phase de développement de l’application web du projet
restaurant, Quai Antique, je préfère m’orienter vers une interface que me propose
PHPMyAdmin.

1. Installation des fixtures

La commande suivante installe le paquet « orm-fixtures » comme une dépendance de
développement pour le projet :

En utilisant Doctrine, ce paquet fournit une bibliothèque de classes et d’outils pour me
générer des données de test dans ma base de données.
Pour pouvoir me générer de faux utilisateurs et de fausses données pour tester l’application,
j’utilise la bibliothèque PHP, « FakerPHP ».
Comme pour le paquet « orm-fixtures », la commande suivante m’installe une dépendance
de développement pour le projet en utilisant Composer :

Sur le GitHub de « FakerPHP » une documentation est fournie ainsi que les méthodes
utilisées pour le bon fonctionnement de la bibliothèque PHP « FakerPHP ».

2. Création de faux utilisateurs et de l’admin

Je crée un nouveau fichier que je nomme « UsersFixtures.php » dans le dossier
« DataFixtures ». Je définis un constructeur en initialisant la propriété privée $encoder de
type UserPasswordHasherInterface qui me fournit des méthodes pour le hachage et la
vérification des mots de passe pour les utilisateurs.
Le code suivant utilise la fonction load() de la classe Fixture pour créer et persister des
données de test dans la base de données. Il crée un utilisateur administrateur, un utilisateur
standard et une réservation en utilisant la bibliothèque Faker pour générer des données
aléatoires réalistes. Le mot de passe est hashé pour les utilisateurs en utilisant l'interface
UserPasswordHasherInterface. Enfin, les données sont persistées en utilisant l'objet
EntityManager.

 46

 47

3. fonctionnalité de Bundle getReference() et addReference()

Dans les fixtures, je décide de créer les plats, menus et les noms des catégories sans passer
par Faker puisque j’ai besoin d’avoir un rendu clair même si ce n’est qu’une phase de test.
J’ai besoin de savoir si les plats sont bien associés aux catégories et de même pour les
menus.

La méthode addReference() du code suivant est appelée pour enregistrer une référence à
une instance de la catégorie avec une clé. Elle est ensuite utilisée avec la méthode
getReference() dans les « DishesFixtures.php ».

J’utilise le même procédé avec la méthode addReference() et getReference() pour les
« CategorieMenusFixtures.php ».

4. Charger les fixtures dans la base de données

Pour charger les données de fixtures dans ma base de données, Le bundle
DoctrineFixturesBundle de Symfony me permet de créer des classes de fixtures et de les
charger dans la base de données avec la commande :

Une fois la commande exécuté, Symfony supprime toutes les données existantes dans la base
de données pour charger les nouvelles créées dans les fichiers de fixtures.

 48

La bibliothèque VichUploader

1. Installation de VichUploader

En utilisant le bibliothèque PHP open source VichUploader, je gère facilement les
téléchargements des fichiers dans l’application web du projet restaurant, Quai Antique.
VichUploader est utile principalement pour stocker les fichiers images dans un endroit bien
spécifique que je modifie dans le fichier de configuration de l’extension VichUploader.

Le gestionnaire de dépendance Composer m’installe VichUploader au projet :

Le [‘all’ => true] signifie que VichUploader est exécuté en phase de développement et
également en phase de production.

2. Configuration de VichUploader

Le paramètre upload_destination spécifie l'emplacement sur le système de fichiers où les
fichiers téléchargés sont stockés. Cet emplacement est défini à partir de la variable
kernel.project_dir, qui pointe vers le répertoire racine du projet Symfony, suivi de

« /public » et de la variable galerie_images. 

3. Modification des chemins pour les images

La fonction vich_uploader_asset() de VichUploaderBundle dans la balise HTML du
templates de Twig génère l'URL de l'image à partir de l'objet d'entité et du nom de l'attribut
qui stocke l'image. Cette URL est ensuite utilisée comme source pour l'élément « img » dans
la page web.

 49

4. Compression des images

Afin d’améliorer les performances de l’application web et pour une meilleur expérience
utilisateur, je compresse toutes les images en passant par le service de compression d’images
en ligne TinyPNG.

L’interface utilisateur avec une solution de gestion de contenu - Easy Admin 4

1. Installation de Easy Admin 4

Pour permettre à un administrateur d’un site de pouvoir créer, lire, modifier et supprimer des
éléments de l’application (CRUD), Symfony offre avec Easy Admin 4 une facilité de création
d’interface d’administration avec le Bundle Symfony. La documentation fournie par le
framework est très détaillée et facile à comprendre.
Je passe par Composer pour qu’il soit installé dans les dépendances.

2. Création du tableau de bord

Avec la commande suivante, cela créer un tableau de bord d’administration pour l’application.
La commande génère automatiquement le code nécessaire pour créer le tableau de bord en
utilisant une configuration simple et intuitive basée sur des fichiers YAML.

J’utilise une class Bootstrap pour un meilleur rendu depuis le templates Twig du tableau de
bord d’administration.

 50

3. Sécuriser le backoffice par une connexion

Je configure l'URL « /admin » pour qu'elle soit accessible qu'aux administrateurs qui ont
l'adresse e-mail « admin@mail.fr » et le mot de passe « password ». Pour cela, j'effectue des
modifications dans le fichier « DashboardController.php » afin de rediriger les utilisateurs non
autorisés vers une autre la page de connexion au compte.

Il est important de souligner que l'accès au tableau de bord administratif est actuellement
possible grâce aux fixtures. Tant que le rôle « admin » est défini dans les fixtures pour le
compte associé à l'adresse e-mail « admin@mail.fr » et au mot de passe « password », l'accès
est autorisé. Toutefois, lors du déploiement de l'application sur une autre base de données, il
va être nécessaire de créer le compte administrateur et de lui attribuer le rôle « admin »
manuellement.

4. Création des CRUDController avec Easy Admin 4

Pour gérer les opérations CRUD (Create, Read, Update, Delete) sur une entité j’exécute la
commande suivante :

Lorsque j'exécute cette commande, une liste d'entités est affichée, me permettant de choisir
celle pour laquelle je souhaite créer le CRUD correspondant. Chaque contrôleur CRUD
(CRUDController) contient une méthode statique appelée getEntityFqcn() qui est définie dans
une classe appropriée. De plus, il y a également une méthode configureFields() qui me permet
de configurer les champs à afficher et à éditer dans les différentes pages liées aux opérations
CRUD.

Chaque élément du tableau représente un champ à configurer. Ils sont créés à l'aide de
différentes classes de champs fournies par EasyAdminBundle, telles que IdField, TextField,
etc.

La méthode new() est appelée sur chaque classe de champ pour créer une instance de ce
champ. On lui passe en paramètre le nom du champ dans l'entité, suivi d'un label optionnel
qui spécifie le libellé à afficher pour ce champ dans l'interface utilisateur.

Afin d'améliorer l'expérience utilisateur pour l’administrateur, j'incorpore des icônes
provenant de la bibliothèque FontAwesome.

 51

voici un exemple avec l’entité Users :

Il est également possible de définir une fonction personnalisée pour modifier les droits de
l'administrateur, tels que limiter sa capacité à supprimer ou modifier un compte client.

voici un exemple pour l’entité Users :

 52

Mise en œuvre des composants de l’application de gestion de contenu

1. Accès au tableau de bord

En environnement local, j'ai un accès au tableau de bord à partir du compte administrateur,
me permettant ainsi d'effectuer des modifications ou de consulter les réservations en toute
simplicité.

 53

2. Application du CRUD depuis le tableau de bord

Depuis le tableau de bord, l’administrateur peut éditer des images qui sont dans l’application :

Conformément aux directives du Chef Michant, l’administrateur peut également avoir la
possibilité de modifier le titre et la description, comme indiqué.

L'administrateur a la possibilité de visualiser les prochaines réservations à venir, ce qui lui
permet de planifier les préparatifs avec son équipe :

 54

L'optimisation du référencement avec le fichier sitemap.xml

1. Protocole respecté

Pour améliorer la visibilité et le classement du site web du restaurant Quai Antique sur les
moteurs de recherche, j'accède à la page « sitemap.org » pour consulter le protocole à
respecter. Cela permettra de fournir une meilleure expérience de recherche et gagner en
visibilité.

2. Controller sitemap.xml

Je crée le controller "SitemapController.php" avec la commande suivante :

Ce controller génère dynamiquement le contenu du fichier « sitemap.xml » en fonction des
URLs spécifiées, puis renvoie ce contenu en tant que réponse http avec le type « text/xml ».

J’attribue des contraintes pour le locale et le format à l’attribue #[Route] :

La méthode index() récupère le nom d'hôte de la requête, génère une liste d'URLs pour le
sitemap en utilisant les noms de routes spécifiés, crée le contenu du sitemap à partir d'un
template Twig, configure les en-têtes de la réponse avec le type de contenu « text/xml », et
renvoie cette réponse contenant le sitemap généré.

 55

3. Boucle dans le fichier Twig

Le code dans le fichier template génère un fichier XML structuré selon les spécifications du
protocole sitemap, où chaque URL est représentée par une balise « url » contenant la balise
« loc » avec l'URL complète.

À l'intérieur de la balise « urlset », une boucle « for » itère sur chaque élément de la variable
« urls ».
Pour chaque élément de « urls », génère une balise « url » contenant une balise « loc » qui
représente l'URL de la page dans le sitemap.

 56

Déploiement du site sur Heroku
1. les prérequis

Pourquoi utiliser la plateforme Heroku pour déployer l’application ?

Tout d'abord, Heroku me fournit un environnement de développement intégré basé sur le
navigateur, ce qui facilite grandement la gestion de mes applications. De plus, Heroku prend
en charge le provisionnement des ressources, la mise en place des serveurs et la configuration
automatique de l'infrastructure, ce qui me permet de me concentrer sur le développement de
mon application sans me soucier des détails techniques.

En utilisant Heroku, j'ai également accès à la gestion de bases de données et à des outils de
surveillance avancés. Cela me permet de stocker et de manipuler facilement les données de
mon application, ainsi que de déboguer et d'optimiser ses performances de manière efficace.

Étant donné que j'utilise le langage PHP et le framework Symfony, Heroku est parfaitement
compatible avec mes choix technologiques. Je n'ai donc pas à m'inquiéter de problèmes de
compatibilité lors du déploiement de mon application.

Heroku me fournit un article sur « devcenter.heroku.com » pour l’installation et l’optimisation
de mon application déployé.

Je m’assure de l’avoir correctement installé :

Étant utilisateur de Mac, si je constate que je n'ai pas la version d'Heroku d’installée, je peux
facilement l'installer en utilisant la commande suivante :

brew tap heroku/brew && brew install heroku

Cette commande utilise Homebrew, un gestionnaire de paquets populaire sur Mac, pour
ajouter le référentiel Heroku et installer Heroku sur mon système.

Pour assurer la sécurité de mon compte Heroku, je m'inscris sur la plateforme. Lors de la
connexion à mon compte, j'ai la possibilité d'optimiser la sécurité en utilisant l'application iOS
Salesforce Authenticator.

Pour me connecter, j'ai deux options, soit je peux utiliser la commande « heroku login » dans
mon terminal. Cela ouvre une interface de connexion où j’entre mes identifiants et utilise
l'application Salesforce Authenticator pour une authentification à deux facteurs ou bien
alternativement, je me connecte directement depuis la plateforme Heroku. J’accède à la page
de connexion où je saisis mes identifiants, puis je suis invité à utiliser l'application Salesforce
Authenticator pour l'authentification à deux facteurs.

 57

En utilisant l'application Salesforce Authenticator lors de la connexion à mon compte Heroku,
j'ajoute une couche de sécurité supplémentaire en plus de mes identifiants traditionnels,
renforçant ainsi la protection de mon compte contre les accès non autorisés.

2. Création de l’application Heroku

Je m’assure d’être sur le bon dossier du projet restaurant, Quai Antique, puis j’exécute la
commande suivante pour créer l’application Heroku.

Une fois que j'ai créé mon application sur Heroku, la plateforme me fournit une URL par défaut.
Cependant, si je souhaite personnaliser cette URL, je peux le faire directement depuis
l'application Heroku. Dans l'onglet « Settings », j'ai la possibilité de modifier le nom de mon
application et d'ajuster ainsi son URL en conséquence. Cette fonctionnalité me permet de
choisir un nom plus significatif et en accord avec le projet restaurant, rendant ainsi l’application
plus identifiable et facilement accessible pour les utilisateurs.

Pour faciliter le déploiement de l'application, Heroku utilise Git en liant le référentiel
(repository) local avec le dépôt Heroku sur la branche principale (master).

3. Création du fichier procfile

Une fois que j'ai choisis le nom de mon application sur la plateforme PaaS (Platform as a
Service) Heroku, je crée un fichier de configuration appelé « Procfile ». Ce fichier est utilisé
pour déclarer les différents types de processus nécessaires à l'exécution de l’application, qui
est basée sur PHP avec Apache comme serveur HTTP.

Pour créer le « Procfile », j'ajoute les lignes correspondantes à chaque type de processus que
je souhaite exécuter. Par exemple, si j'ai besoin d'un processus web pour gérer le trafic HTTP,
je peux inclure une ligne indiquant « web: heroku-php-apache2 public/ » dans le « Procfile ».

Une fois que j'ai ajouté toutes les lignes nécessaires pour mes processus, je sauvegarde le
fichier « Procfile ». Lorsque je vais déployer l’application sur Heroku, la plateforme va lire ce
fichier pour comprendre quels processus doivent être exécutés. Elle utilisera ensuite les
commandes spécifiées dans le « Procfile » pour démarrer les processus correspondants dans
l'environnement d'exécution d'Heroku.

4. Configuration de l’environnement dev/prod

a)Définir la variable d’environnement
En utilisant la commande en ligne, je défini la variable d'environnement sur « prod », ce qui
indique que l'environnement de l'application sur Heroku est configuré pour fonctionner en
mode production.

 58

Avec la commande suivante, je vérifie si la variable d'environnement est correctement définie
en mode production :

b)Définir la DATABASE URL
Depuis l'interface de la plateforme Heroku, j'ajoute l'add-on ClearDB MySQL qui me permet
de bénéficier d'un environnement sécurisé pour la base de données MySQL.

c)Définir ses propres variables d’environnement
Toujours depuis l'interface de la plateforme Heroku, j'ai la possibilité de configurer mes
propres variables d'environnement.

Pour cela, il me suffit de copier la ligne « mysql » du CLEARDB_URL vers le DATABASE_URL.
Afin de vérifier si tout est correct, j'utilise la commande suivante :

 59

Maintenant, j'ai accès à un nom d'utilisateur, un mot de passe, un hôte et le nom de la base
de données, ce qui me permet d'injecter des données dans cette base de données.

5. Exécuter les migrations

Pour mettre à jour le schéma de base de données de l’application hébergée sur Heroku, j'utilise
la commande suivante :

Cette commande exécute les migrations de doctrine, ce qui applique les modifications
correspondantes au schéma de la base de données. Ainsi, je m'assure que ma base de données
est à jour avec la dernière structure de schéma définie dans les migrations.

Je vérifie directement en ligne de commande MySQL si toutes les tables ont bien été créées
dans la base de données fournie par Heroku. Cela me permet de confirmer que la structure de
la base de données est conforme à mes attentes.

 60

6. Rajouter le buildPack pour nodeJS

L’application qui contient l’URL « https://quai-antique-chambery.herokuapp.com/ » affiche
des erreurs 500 sur la page. La raison en est que le dossier « public », qui contient le build, est
exclu de Git (gitignore), ce qui signifie que Heroku n'y a pas accès. Afin de résoudre ce
problème, je compile les assets en production sur le serveur Heroku.

En utilisant la commande « heroku run bash », je me connecte en SSH au serveur sur lequel
mon application est hébergée sur Heroku.
Pour ajouter le buildpack Node.js, j'exécute les commandes suivantes :
- « heroku buildpacks « : Je vérifie la liste des buildpacks configurés pour mon application.
- « heroku buildpacks:add heroku/nodejs » : J'ajoute le buildpack Node.js à mon application.
- « heroku config:set NPM_CONFIG_PRODUCTION=false » : J'utilise cette commande pour
définir la variable d'environnement NPM_CONFIG_PRODUCTION sur « false ». Cela indique à
Heroku de ne pas ignorer les packages de développement lors de l'installation des
dépendances.

Une fois ces commandes exécutées, je consulte les variables d'environnement et les
buildpacks configurés pour l’application dans les paramètres de l'interface de la plateforme
Heroku.

https://quai-antique-chambery.herokuapp.com/

 61

Je procède à la vérification de la version de Node.js et npm, puis, à la racine de mon projet,
j'ajoute les lignes suivantes dans le fichier package.json :

Ces lignes spécifient les versions minimales requises de Node.js et npm pour l’application. Cela
garantit que Heroku utilise les versions spécifiées lors du déploiement du projet.

7. Configuration du server web avec Symfony - Apache : (.htaccess)

Pour spécifier des directives spécifiques pour la configuration du serveur web Apache et gérer
certains aspects du comportement du site, je crée un fichier « .htaccess » à partir de la racine
de du projet. Ce fichier permet de définir des règles de réécriture d'URL, des redirections, des
paramètres de sécurité, des restrictions d'accès aux fichiers, des configurations de cache, et
d'autres personnalisations pour le fonctionnement du site. Il est lu par le serveur Apache lors
du traitement des requêtes pour le répertoire où il est placé et ses sous-répertoires. Cela me
permet d'ajuster la configuration du serveur Apache de manière spécifique au projet sans avoir
à modifier la configuration globale du serveur.

8. Déploiement sur Heroku

Après avoir vérifié que tout est correct, que les derniers commits ont été poussés sur la
branche master, je suis prêt à déployer mon application Symfony sur Heroku en utilisant la
commande suivante :

Depuis l'interface de la plateforme Heroku, je vérifie si le processus de build de mon
application a réussi.

 62

Attribution du rôle admin

Le Chef Michant souhaite que le maître d'hôtel du restaurant soit l'administrateur du site. Pour
permettre l'accès au tableau de bord de l'application en tant qu'administrateur depuis
l’application déployé, la première étape consiste à créer le compte pour l’administrateur puis
de lui attribuer le rôle « admin ». Ainsi, j'utilise une commande SQL en ligne pour récupérer
l'identifiant du maître d'hôtel dans la base de données et lui attribuer le rôle d'administrateur.

 63

Après avoir accédé à la base de données à l'aide de commandes SQL et je navigue vers la base
de données appropriée. Ensuite, je recherche les tables et sélectionne spécifiquement la table
des utilisateurs.

Après avoir identifié l'ID de l'utilisateur qui doit être promu administrateur, j'exécute la
commande suivante :

Désormais, je constate que l'utilisateur ayant l'identifiant 24 possède le rôle d'administrateur,
lui permettant ainsi de gérer les images, les titres, les descriptions et les réservations à partir
du tableau de bord de l'application. Le maître d'hôtel n'aura qu'à se connecter et accéder à la
section d'administration de l'application.

Vérification du bon fonctionnement de l'application

Je vais maintenant simuler l'expérience d'un client souhaitant consulter les plats et menus,
voir les photos des plats, créer un compte, réserver une table et vérifier ses réservations à
venir. Je vais effectuer plusieurs tests de réservation, tels que réserver les jours de fermeture
pour vérifier si les messages d'avertissement s'affichent correctement. Je vais également
effectuer des réservations multiples sans compte client pour vérifier si le nombre de places
est effectivement limité par jour.

Tout se déroule parfaitement comme en local, il ne me reste plus qu'à partager le lien de
l'application avec le Chef Michant. Bien sûr, il peut y avoir quelques détails à peaufiner, mais
si je réponds aux exigences du Chef Michant, je peux considérer que ses souhaits et
contraintes ont été respectés avec succès.

 64

Difficultés rencontrées lors du développement du projet

Lors de la réalisation de ce projet, j'étais encore en phase d'apprentissage. Plus je pratiquais,
plus je comprenais le framework Symfony et les avantages qu'il offrait. Au départ, j'ai été
confronté à de nombreuses erreurs que je ne comprenais pas, mais avec le temps, j'ai fini par
les comprendre.

À plusieurs reprises, je me suis engagé sur des chemins qui n'étaient pas forcément les bons.
Par exemple, j'ai commencé le projet en effectuant un test sur la base de données en
utilisant le logiciel MAMP pour configurer mon environnement de développement local.
Cependant, j'ai réalisé que la version de MySQL utilisée par le logiciel MAMP était inférieure
à celle utilisée pour le projet du restaurant, Quai Antique. J'ai alors compris que je devais
opter pour un autre schéma de stockage de ma base de données.

C'est grâce à la formation que je suivais qu'un formateur a dispensé des cours sur la
plateforme alwaysdata. J'ai donc décidé de m'orienter vers cette plateforme pour héberger
ma base de données en local.

 65

Fonctionnalité la plus représentative : L’authentification

1. Jeu d’essai

Afin de faciliter la saisie du formulaire de réservation, ainsi que la consultation des
réservations passées ou à venir, l'utilisateur doit s'authentifier en utilisant son adresse e-mail
et son mot de passe.

Le mot de passe est stocké dans la base de données, mais pour garantir la sécurité des
utilisateurs enregistrés, il est hashé, c'est-à-dire qu'il est chiffré de manière spécifique pour
qu’il ne puisse pas apparaître en clair.

En utilisant le MakerBundle de Symfony et la commande CLI suivante :

Cela me permet donc de générer rapidement un système d'authentification dans mon
application Symfony.

Lorsque j'exécute cette commande, elle me guide à travers une série d'options pour
configurer mon système d'authentification. Je choisis le type d'authentification que je
souhaite mettre en place, comme l'authentification basée sur les formulaires ou
l'authentification par token. Je spécifier l'entité que j'utilise pour représenter les utilisateurs.

 66

Une fois que j'ai fourni ces informations, la commande make:auth génère automatiquement
le code nécessaire pour mettre en place l'authentification dans mon application Symfony.
Cela inclut la création des classes, des contrôleurs, des vues et des fichiers de configuration
nécessaires.

Grâce à la commande make:auth, je créer rapidement un système d'authentification robuste
dans mon application Symfony. Cela me permet de gagner du temps en évitant d'écrire
manuellement tout le code requis et de bénéficier d'une structure cohérente grâce aux
conventions de Symfony.

Le contrôleur suivant gère les actions de connexion et de déconnexion des utilisateurs. Il
récupère les éventuelles erreurs de connexion, le nom d'utilisateur précédemment saisi, ainsi
que d'autres données liées aux restaurants et aux horaires d'ouverture, puis les transmet à la
vue appropriée pour l'affichage.

 67

La classe suivante UsersAuthenticator définit la logique d'authentification personnalisée
pour le formulaire de connexion. Elle récupère les informations d'identification de
l'utilisateur, crée un objet Passport correspondant et gère les redirections après une
authentification réussie.

2. Veille effectuée sur les vulnérabilités de sécurité

Il est fort recommandé de s’informer sur la sécurité et les vulnérabilités lié à l’informatique.
C’est pourquoi le blog Symfony (https://symfony.com/blog/category/security-advisories) en
plus des sites CVE (Common Vulnerabilities and Exposures) ou OWASP (Open Web
Application Security Project) offre une information continue sur la sécurité et les
vulnérabilités lié directement à l’application.
La documentation de Symfony propose également des informations et des conseils en
matière de sécurité concernant l'authentification des utilisateurs.

 68

3. Recherche à partir de site anglophone, extrait du site anglophone et sa traduction

Voici un extrait de la documentation Symfony permettant d’authentification du utilisateur :
(https://symfony.com/doc/current/the-fast-track/en/15-security.html#configuring-the-
security-authentication)

 69

Configuration de l'authentification de sécurité
Maintenant que nous avons un utilisateur administrateur, nous pouvons sécuriser le backend
administratif. Symfony prend en charge plusieurs stratégies d'authentification. Utilisons un
système d'authentification par formulaire classique et populaire.

Exécutez la commande make:auth pour mettre à jour la configuration de sécurité, générer un
modèle de connexion et créer un authentificateur :

Sélectionnez 1 pour générer un authentificateur de formulaire de connexion, nommez la
classe d'authentificateur AppAuthenticator, le contrôleur SecurityController, et générez une
URL /logout (oui).

La commande a mis à jour la configuration de sécurité pour connecter les classes générées :

Comme indiqué par la sortie de la commande, nous devons personnaliser la route dans la
méthode onAuthenticationSuccess() pour rediriger l'utilisateur lorsqu'il se connecte avec
succès :

 70

 71

Annexes

 72

Remerciements

Je souhaite exprimer ma profonde gratitude envers les formateurs de la plateforme STUDI, à
savoir Thomas BUREAU DU COLOMBIER, Ala ATRASH, Damien BOITEUX, Nathan DERHORE,
Gaëtan ROLÉ-DUBRUILLE, Charline LAPORTE, Antony LAPLANE, Jérémy TAUPIN, Julien
MARTRES et Carlen LAURENT. Leur dévouement, leur soutien, leurs conseils techniques et
leurs encouragements ont été d'une valeur inestimable tout au long du développement de
l'application, en m’aidant à résoudre les problèmes rencontrés.

Je tiens également à remercier chaleureusement les apprenants de la plateforme STUDI, à
savoir Rebecca GERREY, Hanan REBAIA, Julian CALEGARI, Kevin CAFOLLA et David LE
GOUELLEC, pour leur précieuse aide et leurs échanges sur un Discord dédié à ce projet.

Bien que j’aie travaillé seul sur ce projet, j'ai ressenti un soutien collectif tout au long du
processus.

Le projet du restaurant Quai Antique a représenté une avancée majeure dans mon parcours
d'apprentissage, marquant une étape significative dans mon développement.

FERGUENIS Bérenger
2023

